RNase T is responsible for the end-turnover of tRNA in Escherichia coli.

نویسندگان

  • M P Deutscher
  • C W Marlor
  • R Zaniewski
چکیده

A mutant strain deficient in RNase T was isolated and used to study the role of this enzyme in Escherichia coli. Strains lacking as much as 70% of RNase T activity, alone or in combination with the absence of other RNases, display normal growth properties. However, in cca strains, which lack tRNA nucleotidyltransferase, RNase T-deficient derivatives accumulate lower levels of defective tRNA and grow at increased rates compared to their RNase T+ parents. Slow-growing cca strains revert to a faster-growing form that contains less defective tRNA but which is still cca. All of these strains have decreased levels of RNase T. These data indicate that RNase T is responsible for nucleotide removal during the tRNA end-turnover process and that the amount of defective tRNA in cells is determined by the relative levels of RNase T and tRNA nucleotidyltransferase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor.

Precursor molecules of Escherichia coli wild type and mutant tyrosine tRNA’s contain at both their 5’ and 3’ termini extra nucleotides in addition to those of the mature tRNA molecule. The early steps of processing these precursor molecules must involve specific ribonuclease cleavage. We report the isolation from E. coli extracts of the specific endonucleolytic RNase which cleaves only a single...

متن کامل

The DNase activity of RNase T and its application to DNA cloning.

RNase T is one of eight distinct 3'-->5' exoribonucleases present in Escherichia coli. The enzyme plays an important role in stable RNA metabolism, including tRNA end turnover and 3' maturation of most stable RNAs because it is the only RNase that can efficiently remove residues near a double-stranded (ds) stem. In the course of study of its specificity and mechanism, we found that RNase T also...

متن کامل

Polyadenylation helps regulate functional tRNA levels in Escherichia coli

Here we demonstrate a new regulatory mechanism for tRNA processing in Escherichia coli whereby RNase T and RNase PH, the two primary 3' → 5' exonucleases involved in the final step of 3'-end maturation, compete with poly(A) polymerase I (PAP I) for tRNA precursors in wild-type cells. In the absence of both RNase T and RNase PH, there is a >30-fold increase of PAP I-dependent poly(A) tails that ...

متن کامل

Endonucleolytic cleavages by RNase E generate the mature 3′ termini of the three proline tRNAs in Escherichia coli

We demonstrate here for the first time that proline tRNA 3' end maturation in Escherichia coli employs a one-step endonucleolytic pathway that does not involve any of the six 3' → 5' exonucleases (RNase T, RNase PH, RNase D, RNase BN, RNase II and polynucleotide phosphorylase [PNPase]) to generate the mature CCA terminus. Rather, RNase E is primarily responsible for the endonucleolytic removal ...

متن کامل

Cleavage efficiencies of model substrates for ribonuclease P from Escherichia coli and Thermus thermophilus.

We compared cleavage efficiencies of mono-molecular and bipartite model RNAs as substrates for RNase P RNAs (M1 RNAs) and holoenzymes from E. coli and Thermus thermophilus, an extreme thermophilic eubacterium. Acceptor stem and T arm of pre-tRNA substrates are essential recognition elements for both enzymes. Impairing coaxial stacking of acceptor and T stems and omitting the T loop led to reduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 82 19  شماره 

صفحات  -

تاریخ انتشار 1985